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I. Basic properties of the functional spaces.
Hilbertian case

Recall first definitions of the following operators, which are
important in the study of several problems in fluid mechanics or
in electromagnetism.

For v = (v, v2,v3), we set
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Even if we consider here the Hilbertian case, we define the following Banach
spaces, for 1 < p < oco:

HP(curl, Q) = {v € LP(Q); curl v € LP(Q)}, HP(div,Q) = {v € LP(Q); div v € L(Q)}

XP(Q) = HP(curl, Q) N HP(div, Q),

and their subspaces:
HP(curl,Q) = {v € HP(curl,Q); v x n =0o0nT},

HP(div,Q) ={v € H?(div,Q); v-n=0o0nT},
X2 (@) ={veXPQ)vxn=0swr}, XP(Q)={veXP(Q);v-n=0surl}

equipped with the graph norm.



Note that
D(Q) isdensein HP(curl, Q), HP(div, Q) and XP(Q).

We have denoted by v x n (respectively v - n) the tangential
1
(respectively normal) boundary value of v defined in W~ »*(T")

(respectively W_%’p(F)) as soon as v belongs to HP(curl, Q)
(respectively H P(div, 2)).

More precisely, any function v in H P(curl, §2) (respectively
HP?(div,Q)) has a tangential (respectively normal) trace v x n

1 1
(respectively v - n) in W ~#»*(T) (respectively W~ #»?(T)),
defined by



(vxm,p)p = /v-curlcpdm—/curlv-cpdw, (1)
Q Q

(v-m,0)p = /v-gradwdm—i—/(divv)gpdm, (2)
Q Q

for any ¢ € WH'(Q), (resp. for any ¢ € W# (Q)) where (-, )p
1 1.7
denotes the duality bracket between W™ »*(I') and W»" (")
1 1.7
in (1) and between W~ »?(T') and W »* (T') in (2).

Note also that for any 1 < p < o0

D(Q?) isdensein H[(curl,Q) andin HJ(div,Q).



The space X3(Q) = X2(Q2) N X %(Q) coincides with Hj(Q).

Proof. Since the imbedding of H}(Q) in XZ2(Q) is obvious, we
study the inverse imbedding.

Let v € X2() and the extension ¥ of v by 0 outside of .
Since v € X (), it is easy to check from Green formula (1)
that

curl & € L*(R?).
Similarly, the fact that v € X 2(Q) implies that

divo € L*(R3).
Next, thanks to Plancherel equality, the Fourier transform of v
satisfies

(€203 — 39, E301 — &103, E102 — Eo01) € L*(R3)
and
€101 + a0 + 303 € LA(R?).



It is then easy to check that for 1 <14,7, < 3,
1€:0j]1 23y < C(llcurl 8| p2(gay + [|div 3| 12 (zs) )

Hence,
grad o € L*(R?),

and we obtain the theorem.
Remark. By integrating by parts and using a density
argument, the following identity is readily checked for any

function v in H}():

|grad ’UH2L2(Q) = ||Cur11)||%2(9) + ||din||%2(Q)-



Assume that the domain € is of class C'''. Then the space
X 2(Q) is continuously imbedded in H ()

Proof.
e Step 1. We prove that

HY(Q)NX2(Q) isdensein X 2A(Q).
Indeed, let v € X 2(9). Using the density of D(Q) in
X2(Q), let vy € D(Q) which converges to v in X2(Q).

Next, for each k, we consider the unique solution xj in
H1(Q) with zero mean value, of the problem

Yo € HY(Q), /VXk-VQOZ/vk-Vgp.
Q Q

Equivalently, it can be noted that xj solves the Neumann
problem
Ay =diveogy in€) and Opxr =vr-nonl.



Due to the regularity assumption on the domain €2, for each k,
the function xj belongs to H?(£2), so that the vector field
Vi — ka is in Hl(Q)

Finally, due to the convergence of (v},); in X2(f), it is easy to
check that the sequence (Vxj)x converges in L*(Q) towards
Vx, with x € H?(2) solution of the problem

Ax=dive inQ and d,x=v-n=0onT,
and where we observe that
1906 = 0P = [ (o= 0)- Vi~ )
Q Q
Hence, the sequence (vy — Vi + V)i is in HY(Q) N X2(Q)

and converges to v in X 2(€2), which proves the density.



o Step 2. We use the following inequality:
for any v € HY(Q) N X2(Q)
lerad vl = lleurlv]Z g, + Idivol2ag,

/B(’U X n,v X n)dr,
r

where B denotes the curvature tensor of the boundary.



But
|/B('v><n,v><n)d7'| < Cl/|'v]2d7'
r
< Lllarad vl + Collol3 g

We deduce then the following inequality:
for any v € HY(Q) N X 2(),

lgrad v[|72 ) < C(llv]G2(q) + llcurl v][Ta o) + [div v]|72(q)).

o Finally, we prove the theorem.



Theorem 1.3

Assume that the domain € is of class C!'!. Then the space
X %(Q) is continuously imbedded in H'(Q)

Proof.
o Firstly we prove that

H'(Q)NXZ(Q) isdensein X 3(Q)

by using the density of D(Q) in X ?(2) and by solving the
following problem: Find & € H?(2) such that

E— A =curlv, divE=0 in  Q,
En=0 curl€Exn=0 on T,

with v belonging to X %(Q).



Secondly, we use the following inequality: for any
ve HY(Q)NXZ(Q)
lgrad ol = leurlo|2q + [divo|2ag)  (5)

— /(TrB)('v -n)?dr. (6)
r

Like previously we deduce the following inequality:

for any v € HY(Q) N X 3(N)

lgrad vl[3a g, < Clv )% 0+ leurl vl g, +[div ol3ag)-



@ Finally, we prove the theorem.

More generally, setting

X™P(Q) = {veLP(Q); dive € WM LP(Q),
1
curlve W™ 1P(Q), v-me W™ »P(I)},

and

Y™P(Q) = {veLP(Q);dive € WM LP(Q),
1
curlve W™ LP(Q), v xne W™ 2P ()},

then we have the following regularity result

Theorem 1.4

Let m € N* and Q of class C"!. Then X ™2(Q) is continuously imbedded in
H™(Q) and for any v in H ™ (Q):
olame@ < Cllolzg + leurlvllg m1g)

t+ ldivollgm-1g) +llv-nll, )s

m_1
2 (1)

with similar properties for the space Y ™2(Q).




I1. L?-Theory for Vector Potentials

We suppose that {2 is an open set possibly multiply connected
sufficiently regular with a boundary I' non connected. We

I
denote I' = |J I'; with I'; the connected components of '
i=0
J
and ¥ = |J ¥; and ¥; a finite number of cuts.
=1

Q° =Q\ X is simply connected.




Theorem 2.1 (General vector potentials)

A vector field u € L?(Q) satisfies:

dive=0 inQ, (u-n,1)p=0 0<i<I, (7)
iff there exists a vector potential 1, dans H *(Q) such that

u =curly, and divipy=0in Q, (8)

V.

Remark: Note that the condition (u - n, 1)p = 0 makes sense
because, thanks to Green Formula (2), the restriction of u - n to
each I'; belongs to H~/2(T;).



Proof: i) Let uw be any function satisfying (7). Using the above
notation, for 0 < i < I, we consider the solution y; € H'(Q;) of
the following Neumann problem

Axo = 0 in Qo, %:u-n onI'y and %:O on 00
on on

Ayx; = 0 in £, %:u n on [}
on

Then the function @ defined by

u in €,
u=<grady; inQ;,0<i<]T
0 inR3\ 00

belongs to L?(R3) with divergence-free in R3.



Taking its Fourier transform and denoting it simply by @ leads
to the equation
§1ty + §atp + &3 = 0.

Next, observe that conditions (8) are satisfied by a function
if and only if

iy = Eathoz — Extboz, o = Eathor — E1tbos, Uz = E1thoz — Eatbor, (9)

and R R X
&1v01 + &2vbo2 + E31P03 = 0. (10)
In L%(R3), system (9)- (10) is equivalent to
Gy — &l o Gl — Gl o &l — &l
Dot = &2 3‘&253 2 o = &1 3’£|2§3 L s = &2 1‘5’251 2 (1)



Let us define the function 1, by equations (11). Its gradient is
clearly in L*(Q) due to the inequalities

3
|€thox] <) ]
=1

ii) Conversely, for any 1, € H'(Q),
div(curly) = 0.

Moreover, for 0 < i < I, let v; be a function of class C* on Q
which is equal to 1 in a neighbourhood of I'; and vanishes in a
neighbourhood of 'y, with 0 < k < I, k # 7. We have

(u-n, 1)p, = (curl (v;%) - n, 1)p = /Qdiv(curl (Vi)g))dz =0

which is the desired condition.



We require now some preliminaries.

First, for any function ¢ in H '(Q°), grad ¢ is the gradient of ¢
in the sense of distributions in D’(Q2°). Tt belongs to L*(Q°) and
therefore can be extended to L?(€2). In order to distinguish this
extension from the gradient of ¢ in D’'(2), we denote it by

grad g.

Lemma 2.2 (Green Formula)

If 4 belongs to H{(div, 2), the restriction of 4 - n to any ¥;

belongs to the dual space [H 30/ 2(E]-)]’ , and the following

Green’s formula holds: Vy € H *(Q°),
J
(¢ - n, [X]j>2]' = /Qoqﬂ-gradxd:l:—i-/go xdivey de, (12)

7j=1

where we recall that [x]; is the jump of x through ;.

v




We introduce the following space
0%(0°) = {r € H(2°); [r]; = constant, 1 < j < J}.

Using the previous Green formula, it is easy to prove the
following lemma.

Lemma 2.3 (Characterization of ©2(£2°))
Let r belong to H 1(Q°). Then r belongs to ©%(Q°) if and only if

curl(g/;z;l r)=0 inQ.




Theorem 2.4 (Tangent Vector Potential)

A vector field u € L?(Q) satisfies:

dive=0 inQ, (u-n, 1)p=0 0<i<I,

if and only if there exists a vector potential 4 in H *(Q) such
that

u =curly and divey =0 in (,

1
PY-n=0 on I, <¢'n,1>2j20,1§j§J. (13)
This function % is unique and we have the estimate:
[l 1) < Cllull 2o (14)




Before to prove this theorem, we will give some preliminary
results.

Remark. i) The statement of this theorem is independent of the
particular choice of the admissible set of cuts {¥;; 1 <j < J}.

ii) Clearly the uniqueness of the function v will follow from the
characterization of the kernel

K%2(Q) = {veIL*Q),dive=0,curlv =0 in Q

and v-n=0onT}



Proposition 2.5 (Characterization of K%(f2) )

The dimension of the space K%(f) is equal to J. It is spanned
by the functions grad qu, 1 < j < J, where each qu € HY(Q) is
the solution, unique up to an additive constant, of the problem
—Ag¢l' =0 in Q°,

Ot =0 on T,

15
[Qf}k:constant and [5nq]T]k=0,1§k§J, (15)

T f— .
k<67nqj,1>2k— ik 1<k <J,




Proof. This problem is in fact equivalent to the problem:

Find q;‘-F € ©2(0°) such that
Vr € ©0%(Q°), / graquT-gradrdm: [7];
QO

which has a solution, unique up to an additive constant, by
using Lax-Milgram Lemma. Note that €2° is not a Lipschitzian
domain.

Note also that for any r € D(2), we have
(div (gradql). r) = /g;;aqu.gradrdm
Q

= —/ gradqf'gradrdwzo,
QO



As an immediate consequence of this proposition, the
compactness of X 2(12) into L?(2) and Peetre-Tartar Theorem,
we have

Corollary 2.6 (Equivalence of Norms)

On the space X%(Q), the seminorm
J
v leurl v o) + |div oz + Y [(v-n, Dy, (16)
j=1

is equivalent to the norm |[| - || x2(q). In particular, we have the

following inequality for every function v € H }(Q) with
v-n=0onT:

J
”’UHH1(Q) < C(chrlvHLz(Q) + [|div v £2¢q) + Z v-n, 1)y
g=1

(17)




Proof of Theorem ” Tangent Vector Potential”
Existence

@ Assume that (7) and let ¥, € H'(Q) denote the general
potential vector associated with u:
u = curly, and divepy=0 in Q.
© Let x € H'(Q) be the solution of the problem :
—Ax=0 in Q and O, x =1, -n onl.

@ Setting 1, = 1y — grad x, then the function
J

$=v1-> (¥;-n, 1)y gradg]

J=1

is the vector potential required.

Uniqueness : The uniqueness of this function 1) is a

consequence of the characterization of the kernel K2(€).

Note that K2(Q) = {0} if Q is simply connected
I



Theorem 2.7 (Normal vector potentials)

A vector field u € L2(Q) satisfies:

u-n=0onl and divu=0 in€, <u-n,1)zj:0, 0<j<J,

iff there exists a vector potential ¥ in X 2(Q) such that

u =curly and divey =0 in Q, (18)
Ppxn=0 onT, (19)
(w'na 1)1"1:0’1SZSI (20)

This function is unique and moreover, we have:

1Yl < Cllullzzq)-

Remark : If u € H02(div, Q) then the condition (u-n, 1)y, =0, 1<j<Jis
J
necessary and sufficient for the existence of the vector potential 4 satisfying (69)

and (69). The condition (¥ - n, 1>Fi =0, 0 < < I ensures the uniqueness of .



As previously, the uniqueness result is linked to the
characterization of the kernel

K%(Q) ={v e L*(Q),divv =0, curlv =0 in Q and vxn=0o0onT

Proposition 2.8 (Normal Vector Potential)

The dimension of the space K4(Q) is equall to I. It is spanned
by the functions grad qjv, 1 < j < J, where each qjv € H'(Q) is
the unique solution of the problem
( ){—AqZN =0 in Q, qZN =0 on Iy, qZN = constant on I'g,
N
(On al, L)p, =—1 and (9, v, 1>Fk =6, 1<k<I

<




Proof. Let ©(Q2) denote the space

O(Q) ={re H'(Q); rlr, =0 andr|p, = constant, 1 <i < I}.
This problem is in fact equivalent to the problem:

Find ¢¥ € ©(Q) such that

Vr € 0(Q), / grad ¢ - gradrdz = 7|r,,
Q

which has a unique solution, by using Lax-Milgram Lemma.

The functions grad q]N for 1 <1 < I are obviously independent

and belong to K%:(€). It remains to prove that they span
K% (Q). Take any function w in K% (f2) and consider the
function

I
U =w — anl gradg).



It is easy to prove that u satisfies (7), so that it can be written
curl, for some v, in H *(Q). This allows to compute

/u-uZ/u-curllboz/curl“"/’o+<uxn7¢0>F:0
Q Q &

so that u is equal to 0. That ends the proof.



As previously this proposition has a corollary about equivalent
norms.

Corollary 2.9 (Equivalence of Norms)

On the space X% (), the seminorm

I
v Jeurl | gz ) + [[divvlliz) + Y [(v - m, Drf,  (21)
=

is equivalent to the norm | - [| x2(q). In particular, we have the

following inequality for every function v € H }(Q) with
vxn=0onl:

I
1ol 10y < C(leurlv]| g2y + lldiv ol 2i0) + Y (v n, D).

i=1
(22)

v




Proof of Theorem ”Normal Vector Potential” The proof is
divided into three steps.

@ Step 1. Necessary conditions. We assume that

u =curly and diveyp =0in Q,
Pxn=0 on I,
(h-m, 1), =0, 1 <i< 1.

Tt is clear that u = curlep is divergence-free. Moreover for any x € H2(R),
Green formulas yield

/ curlyp - gradx = (u-n, X)r, (23)
Q

/ curlap - grad y — (¢ x n, grad x)p . (24)
Q

Therefore if 9 x n = 0 on I', a density argument gives curly - n =0 on I'.
Hence,
curly € HE(div, Q)

and by Green Formula, we prove that

(curly - n, I)Zj =0 for 1<j<J



o Step 2. Existence of the normal potential vector.
We know that there exists ¥, € H *(Q) with

u = curly, and diviy,=0.

Setting

VZ(Q) = {veX7(Q);dive=0inQand (v-n, 1)y, =0, 1 <5< J},

Then using Lax-Milgram Lemma, the following problem:
Find £ in VZ(Q) such that for any ¢ € VZ(Q)

/ curl¢-curlpdx = / z,bo'curled:z:—/ curly,-pde,
Q Q Q

(25)
has a unique solution & € V2Z(Q). Note that the right-hand

side defines an element of (VZ(Q))'.
Next, we want to extend this formulation to any test

function in X ().



For that, let @ € X2(Q) and x in H 2(Q) satisfying:

Ax=dive inQ and g—;ﬁ:O onl. (26)

Let then ¢ € V(1) satisfying:

J
¢=p—gradxy — > ((@—gradx) n, 1)y, gradq) . (27)
j=1

Observe that
/ curlvy, - grad ydz = / u - grad ydz == 0,
Q Q
and we obtain

/ curlyy - g/r;iqf de = / u - grad qu dx
Q o
J

= > g Ik{w-mn, Vg, + (u-n, ¢ )r =0.
k=1



Hence, (25) becomes: find £ € V%(Q) such that for any
P < X4():

/curl&-curlfpdm:/¢0~curlg~odw/ curlypy-pdz. (28)
Q Q Q

In fact, every solution of (28) also solves the problem

_AE=0, divE=0 inQ,
&€ n=0, (Yo—curl§) xn=0 onT,
(§-n, 1)y, =0,1<5<J



Finally, setting ¥, = 1y — curl§, and

1

¢ = 'd)l - Z<’l,b1 L 1>F~L grad qz]V7

=1

it follows that the function v belongs to L*(Q) and satisfies the
required properties. Observe that &€ € H 2(Q) and then
W e HY Q).

o Step 3. Uniqueness. The uniqueness of this function
is a consequence of the characterization of the kernel
K ().

Note that K %(2) = {0} if T is connected



II1. Inequalities for Vector Fields.
General [’-theory

Theorem 3.1 (Sobolev’s inequalities I)

Any function v € W 1'P(Q) N X § (Q) satisfies:

I

IV ooy < € (lldiv ol o) + llewrl ol o) + 3 o=, Dr,l).  (29)
=1

W. Von Wahl (1992) (I =0, i.e I is connected).



Proof.

@ We introduce the linear integral operator:

1 0
TA@) =~ [ MO grle— € doe.

T: LP(T') — W LP(T) is continuous and consequently compact from LP(T)
into LP(T"). By Fredholm alternative the space Ker(Id + T') is of finite
dimension (equal to I) and Im(Id +T) is closed. Then the operator Id + T is
linear, continuous and surjective from LP(T") onto Im(Id +T). Using the
theorem of open map, for any v € W 1'P(Q) we have :

I
o nllLory < CUIIA+T)(v - n)llLer) + D [(v-n,r,])  (30)

=1

@ For any v € W 1'P(Q) with v x n = 0 on I', we have the following intégral
représentation:

(Id+T)(v-n) = —% (grad/n divy v(y) dy) -n

|z =yl
1 1

- = (curl/ curly v(y) dy) -n (31)
2m o lz—yl




@ Using the trace inequality, we prove:

IId+T)(w - n)lgory < C(ngad/

———div, v(y) dy||
a lz -yl

wLp(Q)
+ fJewnt [ e, )
cur ——curly v(y)dy .
ale—yl 7 W L (@)
@ Using then the Calderén-Zygmund inequalities, we get:
I(Id +T)(v - n)llLecry < C (Idiv ol Lo o) + leurlv]geq)) -
@ From (30) we obtain directly:
I

lv - nllLery < C(lldiv vl Lr (o) + leurl v]| s o) + Z Kv-n,lp,]). (32)

=1



all ay < (1@l Ly, ferad]
w w PP

Moreover, from (31) and using triangular inequality we have:

divy v(y) dyH -1,
w'Tp

»'”(1) olz -yl @

+ chrl/s; iz i ol curly v(y) dyH Wlfé’p(r))’

and thanks to the trace’s theorem we have:

1
. < . .
loonl vy € G nlon + larad [ divy viw) ay

=

wlr(Q)

+ H curl Icurly v(y) dyH

alz—y W1=P<n>>'

Using again the Calderén-Zygmund inequalities and (32), we get:
I

lon| 1, <C(ldivolpeq+lcurlvl @)+ [(v-n, 1)r,]). (33)
wo p(T) i=1



1
@ Asve W' »’P ('), by the trace’s theorem, there exists u € W P(Q) such
that:
v=u onl' and |lullyipe) <Cloll , 1, .
w' TP ()
Because v x n =0 on I', v|r = (v - n)n, using then (33) we get successively

lullw 1oy < Cllo-nll o,

()
I

lellw 100y < C(Idivollzog) + leurl vllgo) + > (v 7,1, ]). (34)
=1

@ Because u — v € Wol’p(Q), we know that for any function w in Wol’p(Q),
we have the following integral representation:

1 1 1
w=—grad — | —— divy w(y)dy+curl i curly w(y) dy.

am Jo |z -yl 7 Jo |z -yl

Using again the Calderén-Zygmund inequalities, we get
IV wll ey < C(lldivw| o) + llcurl w1 (q))- (35)
@ Applying (35) tow =v—u € Wol‘p(Q), we obtain:
IV (v=w)llp () < C(lldiv vllgo () +div ul o (o) +leurl o]l o () + eurl ull oo ) -

Finally, we deduce the required estimate by using directly (34).



Using the Hahn-Banach Theorem, we prove the following lemma

The space W 2(Q) N X () is dense in the space X §(92).

Proof. Let £ belongs to (X%(€2))’, the dual space of X%, ().

We know that there exist f € L¥ (Q), g € L’ (Q) and
h € L¥ () such that for any v € X%(Q),

(K,v>:/f-vdm+/hdivvd.’n+/g-curlvdm, (36)
Q Q Q
We suppose that

Yo e WHP(Q) N XX (Q), (€, v) = 0. (37)



So, we have in the sense of distributions in
f—Vh+curlg =0. (38)

Therefore, due to (37) and (36), we have :
for any y € W 2P(Q) N W, ? ()

/f-dea:+/hAXda::0. (39)
Q Q

Note that div f = Ah € W12 (Q). Because h € L¥' (), we
know that h. € W Y7 (T') and we have:

for any y € W 2P(Q) N W, ? ()

. 8X
/QhAXd-’B — (div f, X>W717p’(Q)xW01’p(Q) = {h, 87>F



/Qf -Vxdz = —(div f, X>W_1,p/(Q)XW01,p(Q),
it follows from (39) that

0
(D=0, wewm@) nw @) (0

Now, let  be any element of WP (T"). Then, there exists an
element x of W2P(2) N Wol’p(Q) such that g—;‘ = o onI'. Hence,
(40) implies that

(hop) o iy, =0,

1 . /
and h = 0in W~ »"" (T'). Because A h belongs to W ~1F' ()
and h € Lp/(Q), then h € Wol’p (©). As a consequence, due to
(38), curl g belongs to L (Q). Finally, let v in X% ().



From (38) and since h € W, "*(Q), we can write

/f-v dm—l—/ hdivvdm+/ curlg-vdz =0, Vo € X5 (Q).
Q Q Q

(41)
As g € Hp/(curl, Q), we have also

Vv € Hb(curl, Q), curlg -vdx = [ g -curlvdex.
0 Q Q

Then it follows from the last equality and (41) that £ vanishes
on X7,(), thus proving the required density.



As a consequence, we have the following result:

Theorem 3.3 (Imbedding of X }.(Q2) in W 17(Q))

The space X X(€2) is continuously imbedded in W '?(Q) and
there exists a constant C, such that for any v in X%, (Q):

[vllwire) < C (vl + |div ollzr () + llcurl v|| gr o) +

I
+ > [v-n, Dr,). (42)
i=1

V.




As an immediate consequence of this theorem, the compactness
of X1(Q) into L?(Q2) and Peetre Theorem, we have

Corollary 3.4 (Equivalence of Norms)

On the space X% (Q), the seminorm

I

v = |leurl | gy + ldiv o) + ) (v -, Dryl,  (43)
i=1

is equivalent to the norm || - || xr(q). In particular, we have the

following inequality for every function v € W 1P(Q) with
vXxn=0onl:

1

19l w100y < C(lleurlw]|ge(qy + [div v s ) + Z@ ‘n, r,).
=1

(44)

v




Theorem 3.5 (Sobolev’s inequalities IT)

Any function v € W 1'P(Q) N X 2(Q) satisfies:

J

IV ollze () < C(lldivollzo() + lleurl ollge) + > (v n, s, 1), (45)
j=1

W. Von Wahl (1992) (J =0, i.e Q is simply connected).



Idea of the proof of (45):

@ We introduce the linear integral operator

75)) X ndag.
lz — &

R: LP(I') — W LP(I) is continuous and then compact from LP(T) into
LP(T"). Fredholm alternative implies that Ker(Id 4+ R) is of finite dimension
(equal to J) and for any v € W LP(Q):

RX(z) curl (

:gr

J
v x nllpr) < C(IUId+ R)(v x n)|| oy + D (v - n, 1)s,[) (46)
=1

@ For any v € W 1'P(Q) with v-n =0 on I, we have :

2

1 1
o (grad/F m(v -n)(&) dag) xmn (47)
— % (curl/Q ﬁcurly v(y)dy) X n.

and the rest of the proof is similar to the case of the operator T'.

1 1
(Id+ R)(vxn) = — (grad/ ——divy v(y) dy) Xn
alz—yl

+



As for the case p = 2, we prove the following lemma

The space W '?(Q) N X 2(Q) is dense in the space X ().

As a consequence, we have the following result:

Theorem 3.7 (Imbedding of X 7(Q2) in W 1P(Q))

The space X 2(f) is continuously imbedded in W () and
there exists a constant C, such that for any v in X%.(Q):

lollwir) < Clvllze@ + 1divellLy @) +

J
leurl v gpigy + Y [(v-m, 1)x,]). (48)
j=1

.




As an immediate consequence of this theorem, the compactness
of X2(€) into LP(2) and Peetre Theorem, we have

Corollary 3.8 (Equivalence of Norms)

On the space X%.(2), the seminorm

J
v = |leurl v gp (o) + [|div v|lLeq) + Z (v n, xgl, (49)
j=1
is equivalent to the norm || - | xr(q). In particular, we have the

following inequality for every function v € W 1P(Q) with
v-n=0onl"

J
19|l w 100y < C(lleurlw]|gr(q) + [|div || Lo () +Z(v ‘n, 1)x,).
j=1

(50)




Recall the following spaces
XmP(Q) = {veIP(Q); dive € W™ HP(Q),
curlve W™ P(Q) v-n ¢ Wmf%’p(lﬂ)},
and
Y™P(Q) = {veIP(Q); dive € WmLP(Q),
curlve W™ P(Q), v x n € Wm_%’p(F)},
then we have the following regularity result

Theorem 3.9

Let m € N* and € of class C"™!. Then X "™P(f) is continuously
imbedded in W ™P(Q) and for any v in W "P(Q):

lollwme) < C(lvlle@ + lleurl o]l gm-1p )

+ Hle ’UHWm—l,p(Q) + ||’U ’ nHWm_%’p(F)),

with similar properties for the space Y ™P(Q).

v




IV. LP-Theory for Vector Potentials

To study the Stokes problems, we need some results concerning
the vector potentials and the inf-sup conditions.

Theorem 4.1 (General vector potentials)
u € HP(div, Q) satisfies:

dive=0 inQ, (u-n, 1)p=0 0<i<I, (51)
iff there exists a vector potential ¥yin W P(2) such that

u =curly, and diveyy,=0inQ, (52)




Proof: Here, we will construct only the general vector potential
o in WHP(Q). Let u be any function satsfying (51). As for
the case p = 2 , we consider for 0 < ¢ < I the solution

xi € WHP(€;) of the following Neumann problem

Axo = 0 in Qo, %:u-n onI'y and %:O on 900
on on

Ax; = 0 in £, %:u-n on I';,
on

and the function @ defined by

u in €,
u=<grady; in; 0<i<]
0 inR3\ 00

which belongs to H P(div, R?) with divergence-free in R3.



The function ¥y = curl( E * u ), with E the fundamental
solution of the laplacian, satisfies

curlpy=u and divep, =0 inR>.
Applying the Calderén Zygmund inequality, we obtain
IV ol sy < ClA(E * u)| prsy < Cllullgrmsy < Cllul e

and vg|o belongs to W P(0).



With a similar proof that to the case p = 2, we have

Theorem 4.2 (Tangent Vector Potential)

A function v in HP(div, Q) satisfies (51) if and only if there
exists a vector potential ¥ in W P(Q) such that

u =curly and divey =0 in €,

53

PY-n=0 on T, <¢~n,1>2j:0,1§j§l (53)
This function % is unique and we have the estimate:

1]l w ey < Cllullzr@)- (54)




Theorem 4.3 (Inf-Sup condition in Banach spaces)

Let X and M be two reflexive Banach spaces and X’ and M’
their dual spaces. Let a be the continuous bilinear form defined
on X x M,let Ae L(X; M')and A" € L(M; X') be the
operators defined by

Yo € X, Yw € M, a(v,w) = < Av,w > = < v, Aw >

and V = Ker A. The following statements are equivalent:
i) There exists 8 > 0 such that

a(v,w)

> f. (55)

inf sup ——————
weM yex ||v]lx [lwlla
w#0 v#£0

ii) The operator A: X/V — M’ is an isomophism and 1/0 is
the continuity constant of A~1.

iii) The operator A’ : M +— X’1V is an isomophism and 1/f is
the continuity constant of (A’)~!.




Proof.

First, we note that i) < iii) because (X/V) = X' 1L V where
this last space contains the elements f € X’ satisfying

(f, v) =0 for any v € V. It suffices then to prove that i) < iii).
We begin with the implication i) = ii). Due to (55), we
deduce that there exists a constant S > 0 such that:

1
vwe M, [wlla < = sup L2
ﬁ veEX HUHX
v#£0

SO, 1
/
lwlla < ZlA W] x7, (56)

and A’ is injective. Moreover, Im A’ is a closed subspace of X’
where A’ : M — X'. Moreover, Im A’ = (Ker A)t = X' 1 V. It
remains to prove that i) = 7). For this, it suffices to prove
that if 44i) holds, then (56) also holds and (55) follows
immediately. O




Remark

As consequence, if the Inf-Sup condition (55) is satisfied, then
we have the following properties:

i) Because A’ : M +— X'V is an isomophism, then for any
f € X', satisfying the compatibility condition

YoeV, < fuv>=0,

there exists a unique w € M such that

1
Yo e X, alv,w) =< f,v> and HwHMSBHf”X“ (57)

ii) Because A: X/V + M’ is an isomophism, then for any
g € M', Jv € X, unique up an additive element of V', such that:

1
Vw e M, a(v,w) = <g,w> and |lvllx;y < Zllgllar




We define the space

VEQ) = {we XL(Q);divw=0inQ and
(w-n, L)y, =0, 1 <j < J}

which is a Banach space for the norm || - || x»(q)-

Lemma 4.4 (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
B > 0, such that

Jocurl - curlpdx

inf sup > B. (58)
U Ty - 1
p#0  &F0 ’




Proof. We need the following Helmholtz decomposition: every
vector function g € LP(2) can be decomposed into a sum

9=Vx+z,
where
ze HP(div, Q) with divz=0 and x e W,?(Q)
with the estimate
IV xllzr @) + [12llzr @) < Cllgllzr @) (59)

Let ¢ any function of V%(Q). We know that

| [qcurle - gdiIJ}
Ol vp oy < Cllcurle|| 0y = C  sup
| HXZ%(Q) | ”Lp (©) geLP(Q) HQHL”
970
(60)



We set

I
= Zznl V.

=1
So,

ze’(Q), divz=0 and (z-n, L)r,=0 V0<i<I.
By Theorem of tangential vector potentiel, there exists a vector

potential ¢ € V*#.(Q) such that Z = curleyp inQ. This implies
that

/curlcp-gda:—/curlcp-zdw—/curlcp-%da:.
Q Q Q



Moreover, we have

I
Elpe < I2lp@+ S 1z n DrllV e oo
1=1
< .
< lelz@+Clz-nl 1,
Since z belongs to H?(div, Q) and div z = 0, by using the
continuity of the normal trace operator on H P(div, ©2), (59)
and (61) we obtain

12l zr @) < Cllzllzr) < Cligllpr @) (61)

Finally, using Corollary ”equivalence of norms” we can write

| [gcurly - gdz|

| [qcurly -z dz| <C‘churlgo-curl'¢da:‘
gl zr ()

<C — < )
12| 7 (02) 1l x2 ()

and the Inf-Sup Condition (58) follows immediately from (60).



In the next, we illustrate the importance goal of the Inf-Sup
Condition by using it to resolve the following first elliptic
system.

Proposition 4.5 (Neumann problem for vector fields)

Assume that v belongs to LP(€2). Then, the following problem

—A&=curlv, divE=0 in (2,
£ n=0, (curlé —v)xn=0 onTl, (62)
<£n71>232071§j§¢]7

has a unique solution in W 1P(Q) and we have:
€]l w 1p) < Cllvllze)- (63)

Moreover, if v € W MP(Q) and € is of class C%', then the
solution & is in W 2P(Q) and satisfies the estimate:

HsHKQ!PiQi = CH’UHﬁmiQi- (64)




Proof.

i) Existence and uniqueness. Thanks to Inf-Sup condition,
the following problem: find £ € V1.(Q2) such that

Vo € V};(Q), /curlﬁ‘curlcpdm:/'v-curlcpd:n. (65)
Q Q

satisfies the Inf-Sup condition (58). So, it has a unique solution
& € VI.(Q) since the right-hand side defines an element of
(V’%/ (Q))" . By using previous imbeddings results, this solution
€ belongs to W P(2). Next, we want to extend (65) to any
test function @ in X I:}/(Q) We consider the solution y in

WP (Q) up to an additive constant of the Neumann problem:

Ax=divyg nQ and g%zo onT. (66)
Then, we set
J —_
o=@ —grady— Y (@ grady) - n, 1)s, gradq?.  (67)

j=1



Observe that ¢ belongs to V’%(Q). Hence (65) becomes:
Find &€ € V1.(Q2) such that

VLTDGXI;«/(Q), /curlﬁ-curlc}daz:/v-curlcfoda:. (68)
Q Q

It is easy to proof that every solution of (62) also solves (68).
Conversely, let € the solution of the problem (68). Then,

—A¢ =curlcurl§ =curlv in Q.
Moreover, since € belongs to the space V#.(Q2) we have
divE=0 inQ, & n=0onl and ({-n,l)x =0,
forany 1 < j < J.

Then, it remains to check the boundary condition of Problem
(62):
curlé xn=v xnonl.

But
z=curl{ —v e HP(curl, Q) with curlz=01in Q.
I



Consequently, for any ¢ € X %(Q) we have:

/z-curlfod:n — (zxn,{é>p:/curlz~§5d:c:0.
Q Q

Using (68), we deduce that
Ve € X5(Q), (zxn,@)r=0.

1y
Let now p be any element of the space W L=yrp (T"). So, there
exists an element @ of W b (Q) such that @ = p, on T, where
p, is the tangential component of g on I'. It is clear that ¢

belongs to X%(Q) and
<Z X n,/l,>1" = <Z X 'n,lit>1“ = <Z X na(:b)l—‘ =0.

This implies that z x m = 0 on I which is the last boundary
condition in (62).



ii) Regularity. Now, we suppose that
ve WP(Q) and Qisof classC??.

Let £ € W 1P(Q) given by the first step and z = curl € — v.
Observe that
z€ XX (Q) = WhP(Q).

This implies that
curl¢ € WhP(Q).

Thanks to the regularity resuts for vector fields, we deduce that
£ W2P(Q)

and satisfies the estimate (64), which finishes the proof.



Remark

i) Note that we can directly prove the uniqueness of the
solution of the problem (62) by using the characterization
of the kernels K2(Q) and K ().

ii) When v belongs only to LP(2), then
(curl§ —v) xn € W_%’p(f‘)

but neither
curlé xn nor wvxmn

is defined. However, if v € H?(curl, ), then

_1
vxn and curlé xn have asense in W »P(T).



Theorem 4.6 (Normal vector potentials)

u € HP(div, Q) satisfies:
u-n=0onl and divu=0 inQ, (u-n, 1)y =0, 0<j<J,

J

iff there exists a vector potential 1 in X P(2) such that

uw =curly and divey =0 in Q,
PYxn=0 on I',
(¢ - n, 1>Fi:07 1<i< 1.

This function is unique and moreover, we have:

1%l w100 < Cllullze @)

Remark : If u € Hé’(div7 Q) then the condition (u - n, 1)2j: 0, 1<j<Jis
necessary and sufficient for the existence of the vector potential v satisfying (69)

and (69). The condition (3 - n, 1), =0, 0 < i < I ensures the uniqueness of .



Idea of the proof

@ We use the Inf-Sup condition (58) to solve the problem:
Find &€ € W 1'P(Q) such that:

—A€£=0 and divE=0 in Q,
(P) £-n=0 curléxn=4yxn onl,
<£'na 1>Ej =0,

where 1, € W 1'P(Q) is the tangential vector potential.

@ Setting 9, = 1y — curl§, we have
P, € LP(Q), 0=divey, € LP, curlyp, € LP(Q) and ¥ Xxn=0 onT
Using the regularity results for vector fields, we deduce that ¢, € W 1'P(Q).

@ The required vector potential is given by:

I

Y =1 - Z<¢1 -, L)r, grad g’

=1



Theorem 4.7 (Inf-Sup Condition in X%,)

The following Inf-Sup condition holds: there exists a constant
B > 0, such that

Jocurl§ - curlpdz

inf sup > g. (69)
pevr @ eevi @ I8llxz@lelyr o,
p#0 £#0

Proof The proof is very similar to that of X7.. Let ¢ be any
function of V& (Q). Due to the equivalence norm, we can write:
for any ¢ € V]’\),/ (Q)

| g curly - gdz|
Ol vo' oy < Cllcurlep|| ;0 = C  sup .
1l = Clewd @l =C s = gl
970



We use now the Helmholtz decomposition
g=Vx+z where xy € W'P(Q) and z € H?(div, Q)

with
divz=0 inQ andz-n=0 onl.

Moreover, we have the estimate

IV xllzr (@) < Cllgllzr -
The following vector fields

J
Z z-m, 1)y, gradqj
j=1

satisfies
divz=0inQ, zn=0 onl' and (z'n, 1)y, =0V1<j<J

Using the theorem of normal vector potential the rest of the
proof is similar to the Inf-Sup Condtition I.
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